

Journal of Advanced Scientific Research

Available online through https://sciensage.info

ISSN
0976-9595
Review Article

RECENT DEVELOPMENTS IN KNOEVENAGEL CONDENSATION REACTION: A REVIEW

Devi Diksha¹, Kumar Naresh*²

¹Department of Chemistry, Maharshi Dayanand University, Rohtak, Haryana, India ²Department of Chemistry, DCGJ Government College, Behror, Alwar, Rajasthan, India *Corresponding author: nareshamansharma@gmail.com

Received: 09-03-2022; Revised: 01-06-2022; Accepted: 09-06-2022; Published: 30-06-2022

© Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

https://doi.org/10.55218/JASR.202213502

ABSTRACT

Knoevenagel condensation reaction is a basic reaction of organic chemistry employed for the construction of C-C double bonds from aromatic carbonyl compounds specially aldehydes or ketones with active methylenes materials using different catalysts and also employed for the total synthesis of natural products, fine chemicals, pharmaceutical products, functional polymers and various important drug intermediates. In this article we discuss some recent developments to catalyze the Knoevenagel condensation reaction of different reactant in different catalytic environment, under different reaction conditions and comparative study of activity of some literate reported catalyst for Knoevenagel condensation reaction. Certainly this review will provide a great help to researchers for the new developments in the field of Knoevenagel condensation.

Keywords: Knoevenagel condensation, Aldehydes, Active methylenes, Protocol.

1. INTRODUCTION

In between 1896 and 1898 Emil Albert Knoevenagel reported a basic condensation reaction of aromatic aldehydes or ketones with active methylenes compounds in presence of basic catalyst such as primary and secondary amine, not tertiary amine, for the synthesis of electrophilic alkenes [1-7] and a lot of applications were found in the total synthesis of natural products [8], fine chemicals [9], pharmaceutical products such as antioxidant, antimalarial, antiviral and anticancer agents [10], functional polymers [11] and important drug intermediates (substituted alkenes) [12].

In literature, number of methods (ball milling, simple ultrasonic irradiation, grinding, microwave and photochemical assisted) were reported for a greener Knoevenagel condensation reactions under mild or solvent-free conditions and number of review articles were published by different researchers [13]. In this review, we discuss the recent development for the synthesis of different alkenes by the use of different catalysts or different reaction conditions in Knoevenagel condensation reaction. Surly this review will provide a better understanding to researchers for further electrophilic through development in alkenes Knoevenagel condensation reaction.

2. RECENT DEVELOPMENTS IN KNOEVENAGEL CONDENSATION REACTION

S. Bej and group synthesized an oxene based sensory 3-amino-3H-benzo[f]chromene-2-carbonitrile (HyMa) via Knoevenagel condensation reaction. It involved 2-hydroxy-1-naphthaldehyde (172.18 mg, 1 mmol) and NEt₃ (200 µL) in dehydrated culture media (DCM), after 4 hour stirring at room temperature a yellow crude product (90.7%) was yielded as shown in Scheme 1. The completion of reaction was monitored by various instruments like FT-IR, ESI-MS (m/z=221), FE-SEM, UV-Vis and 1H NMR. Numerous applications of chemosensory HyMa were found like as for development of molecular keypad lock, in real field water sample analysis, in vitro toxicity study and MTT assay of HyMa showed low cytotoxicity and membrane permeability indicating its attractive capability for bioimaging towards triple negative breast cancer [14].

P. Ganwir *et al* used Wet Copper slag (copper slag is a waste material produced from copper refining) as a catalyst for Knoevenagel condensation reaction of aldehydes or ketones with malononitrile as well as active methylenes in environmentally-benign solvents water: ethanol (1:1) at room temperature or 90°C in a short reaction time respectively, high yield of the products

were obtained as shown in **Scheme 2**. After completion of reaction, catalyst was easily separated with the help of magnet and reused for three times without significant loss of catalytic activity. Many advantages of current protocols were found such as catalyst leaves no residues, mild reaction conditions required at low temperature, environment friendly and used to synthesized the intermediate of AMG 837, a novel GPR40 agonist [15]. Comparative studies of wet copper slag with literature reported catalysts discussed in table 1.

To catalyze the Knoevenagel condensation reaction of aromatic aldehydes with active methylene compounds

under mild reaction condition, H. Anahmadi and group prepared a catalyst alpha-tricalcic phosphate (α-Ca₃ (PO₄)₂), which provided high yield of the product at room temperature. Furthermore, current protocol had several beneficial including, drifts under sustainable conditions, shorter reaction time (30-60 min), small quantity of catalyst required and catalyst recovered very easily and gave excellent yield of the product without significant loss of catalytic performance in more than five times reuse. Catalytic amount of alpha-tricalcic phosphate used to prepared also 2,3-diphenylquinoxalines [27].

Scheme 1: Synthesis of 3-amino-3H-benzo[f]chromene-2-carbonitrile

Scheme 2: Synthesis of AMG 837 intermediate

$$\begin{array}{c} O \\ H \end{array} + \begin{array}{c} CN \\ X \end{array} \qquad \begin{array}{c} \alpha - \text{Ca}_3(\text{PO}_4)_2 \ (8 \ \text{mol}\%/\ 2.56 \ \text{mg}) \\ \text{2 ml EtOH, rt} \end{array} \qquad \begin{array}{c} CN \\ \text{X} \end{array}$$

Scheme 3: Synthesis of electrophilic alkenes

Table 1: Comparative study between Wet copper slag catalyst and other literature reported catalysts for the synthesis of 2-benzylidene malononitrile

Entry	Catalysts	Reaction condition Time (h)		Yield (%)	Ref
1	Powdered Magnetized copper-slag	EtOH: H ₂ O/rt	1	0	[15]
2	Wet copper slag	EtOH: H ₂ O/rt/90°C 0.25		98	[15]
3	Commercial MgO	EtOH/rt 0.3		99	[16]
4	$[\mathrm{Gd}_2(\mathrm{tnbd})_3(\mathrm{DMF})_4].4\mathrm{DMF}.3\mathrm{H}_2\mathrm{O}$	C_6H_5/rt 0.3		96	[17]
5	TMU-5	Water/rt	0.5	100	[18]
6	$Ce(PO_2NH)_3.5H_2O$	EtOH/100°C	2	95	[19]
7	Unannealed ZrO_2	EtOH/78°C	2	95	[20]
8	FeNPs/PPD@rGO	Toluene/40°C	3.5	100	[21]
9	MOF-NH ₂	DMF/80°C	4.5	51	[22]
10	Cu-metal surface	EtOH/56°C	6	99	[23]
11	Pb(cpna) ₂ .DMF.6H ₂ O	MeCN/rt	24	100	[24]
12	NHCu(II)@MNP	Ethanol/80°C	1	91	[25]
13	MIL-53 (Fe)@SiO ₂ @NiFe ₂ O ₄	Solvent-free/rt	1	99	[26]

Scheme 4: Mechanism suggested for the synthesis of alkenes by α -Ca $_3$ (PO $_4$) $_2$

Entry	Catalyst	Reaction conditions	Yield (%)	Ref.
1	α -Ca ₃ (PO ₄) ₂	2.56 mg/8 mol%, 2 mL EtOH, rt, 30-60 min	83-96	[27]
2	Mesoporous Amino-silica	20 mg, EtOH, rt, 6h	64-90	[28]
3	HAP-γ-Fe ₂ O ₃	0.025 g, H ₂ O, 30°C, 1h	60-99	[29]
4	mpg-C ₃ N ₄ -tBu	50 mg, CH ₃ CN, 70°C, 2h	48-98	[30]
5	Na-A-PW ₉	0.25 mol%, MeOH, rt, 6h	80-98	[31]
6	R ₂ (1MCl-2NaPO ₃) (2%)	6 mg, 3 ml EtOH, rt, 3-30 min	85-98	[32]
7	$(N_2H_5)_2SiF_6$	0.1 mol%, 2 ml EtOH, rt, 30-60 min	54-98	[33]
8	CaHPO ₄ , 2H ₂ O (DCPD)	10 mg, 3ml EtOH, rt, 10 min	84-96	[34]
9	Na.Ca(HPO.).	6 mg 3ml FtOH rt 10-65 min	82-97	[35]

Table 2: Comparative study between catalytic activity of α -Ca₃ (PO₄)₂ catalyst and other literature reported catalyst for the synthesis of electrophilic alkenes as shown in Scheme 3

J. Floriano da Silva et al reported a catalyst, zeolite 4A the [3-(trimethoxysilyl) (LTA-x)using octadecyldimethylammonium chloride (TPOAC) organosilane surfactant to formed mesopores for bulky molecules. In Knoevenagel condensation reaction, a high conversion of benzaldehydes were achieved using zeolites 4A containing mesopores, which provided higher external surface area for bulky molecules by using different concentration of TPOAC (0-0.09) compared to conventional zeolite 4A [36]. Furthermore reaction acierated by the zeolite containing mesopores had lower activation energy (33.6 KJmol⁻¹) compared to use of the conventional zeolite 4A (40.9 KJmol⁻¹) [37]. S. Chakraborty et al reported first base and metal free protocol for Knoevenagel condensation reaction in a medium including water-SDS-[BMIm]Br composite system. The developed protocol provided

good to excellent yield of the Knoevenagel condensation products from different aromatic aldehydes and active methylenes compounds (malononitrile ethyl cyanoacetate or cyano acetic acid). Waste of the reaction also acted as a good catalyst after six recycling process. All aldehydes gave very high yield of the product with malononitrile under given reaction conditions in Scheme 6, but some aldehydes (naphthaldehyde, thiophene-2-carboxaldehyde and indole 3carboxaldehyde) take little more time to give desired products. Moreover, current protocol had many advantages such as free from chromatography and use of volatile organic solvents and environment benign. Light scattering study proved that the reaction proceeds in the hydrophobic cavity of the micelle formed in the medium [38].

Scheme 5: Synthesis of 2-cyano-3-phenylacrylate

Scheme 6: Synthesis of functionalized α , β -unsaturated compounds

Table 3: Comparative study between catalytic performance of water-SDS-NIL system and other literature reported catalysts for the synthesis of functionalized α , β - unsaturated compounds as shown in Scheme 6

Entry	Catalyst	Solvent	Temp	Malor	onitrile Ethyl cyar		noacetate	
			(°C)	Time	Yield (%)	Time	Yield (%)	
1[38]	SDS and 1-Butyl-3-methy- limidazolium bromide	Water	80	15-120 min	90-96	4-8 hr	66-95	
2 [39]	Microporous polyurethane material	THF	50	14 hr	80-99	-	-	
3 [40]	Metal organic framework	THF	50	4 hr	35-100	-	-	
4 [41]	Ču metal	EtOH	56	-	-	6 hr	68-98	
5 [42]	ZnO Catalyst	Water	rt	85-94	85-94	4-24 hr	82-92	
6 [43]	Polyacrylamide functional polymers	Water	80	-	-	75-270 min	90-99	
7 [44]	Calcium hydroxyapatite	DCM	MW	87-93	87-93	5 min	46-98	
8 [45]	Hydroxyapatite encapsulated γ - Fe ₂ O ₃ nanoparticles- ionic liquid	Water	30-80	89-99	89-99	3 hr	88	
9 [46]	Molecular complex of N- methylpiperidine-(2,4- Dinitrophenol)	No	rt	60-98	60-98	10-20 min	50-95	
10 [47]	KF-Montmorillonite	DMF	80	73-92	73-92	3 hr	74-90	
11 [48]	$Bi(NO_3)_3.5H_2O$	Water	Reflux	88-95	88-95	-	-	
12 [49]	L-Histidine/L-Arginine	Water	rt	83-92	83-92	5-8 min	85-97	
13 [50]	Urea-functionalized mesoporous polymers	Water	50	-	-	4 hr	72-99	
14 [51]	3-aminopropylated silica	Water	rt	93-98	93-98	1.5-3 hr	76-100	
15 [52]	DABCO with pyridinium ionic liquid	Water	50	-	-	20-40min	83-99	
16 [53]	${ m TiO_2}$	No	80	70-95	70-95	14 hr	70	

E. Valiey and M. G. Dekam reported a new catalyst Cu@EDTAD-PMO (Cu(II) species on ethylenediaminetetraacetic dianhydried-bridged periodic mesoporous organosilica), which catalyzed the oxidation of benzyl alcohols into corresponding aldehydes followed by subsequent Knoevenagel condensation with malononitrile (one pot multistep synthesis or cascade synthesis), provided corresponding α,β -unsaturated nitriles using TBHP(tert-butyl hydro peroxide) as a green oxidant under mild reaction conditions as shown in Scheme 7. The current protocol had many advantages such as good selectivity of the product was obtained by using nano-ordered and reusable Cu@EDTAD-PMO catalyst [54].

Lulu Chen and group used first time sodium alginate as catalyst for Knoevenagel condensation of furfural with

acetylacetone produced high quality fuel precursor (3-(furan 2-ylmethylene) pentane-2,4-dione with 86.47% yield) as shown in Scheme 9. One of the important advantage of sodium alginate catalyst observed, it provided high yield of the product on six times recycling without loss of catalytic performance [55].

F Hajizadeh et al synthesized a (covalent bonded $Fe_3O_4SiO_2$ @PAMAM-G2) magnetic cored amino group terminated dendrimer catalyst for Knoevenagel condensation of aldehydes with malononitrile under solvent-free and mild reaction conditions. The given catalyst provided high yield of the product under given reaction condition in Scheme 11 and separated very easily from reaction mixture by an external magnet and recycled five times without loss of catalytic activity [56].

R-CH₂·OH
$$Cu@EDTAD-PMO (20 mg)$$
 R CN CN NC CN $TBHP, 50°C, 6h $(80-95\%)$$

R-Aryl or heteroaryl

Scheme 7: Synthesis of α,β -unsaturated nitriles

Scheme 8: A plausible mechanism for the synthesis of α,β -unsaturated nitriles

Scheme 9: Synthesis of fuel precursors from furfural and acetylacetone

Scheme 10: Plausible reaction mechanism for Knoevenagel condensation of furfural with acetylacetone by using sodium alginate

CHO
$$R \xrightarrow{||} + CN \qquad Fe_3O_4@SiO_2@PAMAM-G_2 \qquad Following Foundation CN$$
Solvent-Free or EtOH (5 drops), 50°C, 30 min R || CN

Scheme 11: Synthesis of 2-benzylidene malononitrile derivatives

Scheme 12: Possible mechanism for the synthesis of 2-benzylidene malononitrile derivatives

Conditions Time (min) Yield (%) Entry 1 [56] Fe₃O₄@SiO₂@PAMAM-G₂/Solvent-free/50°C **30** 95 2 [57] RE(72%)NaY/CH₃CN/rt 720 78 3 [58] CTMAB/H₂O/rt 90 91 93 4 [58] MgO/ZrO₂/Solvent-free/60°C 20 5 [59] Znβ/Solvent-free/140°C 360 16 60 75 6 [60] PVC-TEPA/EtOH/reflux 7 [61] Na₂S/Al₂O₃/CH₂Cl₂/reflux 20 90 MgF₂/EtOH/rt 93 150 8 [62] 9 [63] Ni-SiO₂/Toluene/reflux 900 100 82 10 [64] C/Z-30/70/EtOH/reflux 50 73 Fe₃O₄@UiO-66-NH₂-3/DMF/80°C 60 11 [65] 93 Fe_3O_4 (aSiO₂-3N/Water/75°C 12 12 [66] 13 [67] Fe₃O₄@P4VP@ZIF-8/Toluene/23°C 120 99 Fe₃O₄@SiO₂@Ni-Zn-Fe/EtOH/reflux 92 14 [68]

Table 4: Comparative studies of catalytic efficiency of Fe₃O₄@SiO₂@PAMAM-G₂ catalyst with other literature reported catalyst for the synthesis of benzylidene malononitrile as shown in Scheme 11

3. CONCLUSION

From above discussion it was found many applications of Knoevenagel condensation reaction between different aromatic aldehydes with active methylenes compounds with different catalysts. In this review we discussed developments some recent in Knoevenagel condensation reaction which has many applications in total synthesis of natural products, fine chemicals, pharmaceutical products, functional polymers and various important drugs intermediates. Certainty this review will provide a great help to research community for synthesizing the new material in Knoevenagel condensation reaction.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Source of funding

No funding received for the work.

4. REFERENCES

- 1. Knoevenagel E. Angew Chem, 1922; **35:**29.
- 2. Jones G. Org React, 1967; 15:204.
- 3. Knoevenagel E. Ber Dtsch Chem Ges, 1898; 31:2596.
- 4. Knoevenagel E. Ber Dtsch Chem Ges, 1894; 27: 2346.
- 5. Knoevenagel E. Ber Dtsch Chem Ges, 1898; 31: 2585.
- 6. Knoevenagel E, Schmidt E. *Ann Chem.*, 1894; **25**: 281.
- 7. Knoevenagel E. The German chemist, 1896 and 1898.

- 8. Heravi MM, Janati F, Zadsirjan V. Monatshefte für Chemie Chemical Monthly, 2020; **151:**439-482.
- 9. Freeman F. Chem. Rev, 1980; 4:329-350.
- 10. Kraus GA, Krolski ME. J. Org. Chem, 1986; 1: 3347-3350.
- 11. Heravi MM, Janati F. Monatsh. Chem, 2020; 4: 439-482.
- 12. Kolla SR, Lee YR. Tetrahedron, 2011; 43:8271-8275.
- 13. Beurden KV, Koning SD, Molendijk D, Schijndel JV. Green chemistry letters and reviews, 2020; 13: 349-364.
- 14. Bej S, Das R, Mondal A, Saha R, Sarkar K, Banerjee P. *Molecular and Biomolecular Spectroscopy*, 2022; **273**:120989.
- 15. Ganwir P, Kale I, Chaturbhuj G. Sustainable Chemistry Pharmacy, 2022; 25:100614.
- 16. Guo F. Inorg. Chem. Commun, 2019; 101:87-92.
- 17. Das RK, Aijaz A, Sharma M, Lama P, Bharadwaj P. *Chem. Eur J*, 2012; **18:**6866-6872.
- 18. Masoomi MY, Beheshti SMorsali A. *J. Mater. Chem. A*, 2014; **2:**16863-16866.
- 19. Yi J, Fu Z, Liao S, Song D, Dai J. J. Mater. Chem, 2011; 21:6144-6147.
- Malakooti R, Hesamaldin M, Hosseinabadi R, Petrov S, Andrea M. RSC Adv, 2013; 3:22353-22359.
- 21. Patel D, Vithalani R, Modi CK. New J. Chem, 2020; 44:2868-2881.
- 22. Taher A, Vithalani R, Modi C. Synlett, 2016; 27: 1433-1437.

- 23. Schneider EM, Zeltner M, Kranzlin N, Grass R, Stark W. Chem. Commun, 2015; 51:10695-10698.
- 24. Lin XM, Li T, Chen L, Zhang L, Su C. Dalton Trans, 2012; 41:10422-10429.
- 25. Yuan X, Wang Z, Zhang Q, Luo J. RSC Adv, 2019; 9: 23614-23621.
- 26. Yao N, Tan J, Liu Y, Hu YL. Synlett, 2019; **30:** 699-702.
- 27. Anahmadi H, Fathi M, Hajri FE, Benzekri Z, Sibous S, Idrissi BCE. *Journal of Molecular Structure*, 2022; **1248:**131449.
- 28. Mondal J, Modak A, Bhaumik A. J. Mol. Catal. A Chem, 2011; **335:**236-241.
- 29. Zhang Y, Zhao Y, Xia C. J. Mol. Catal. A: Chem, 2009; **306:**107-112.
- Su F, Antonietti M, Wang X. Catal. Sci. Technol, 2012; 2:1005-1009.
- 31. Zhao S, Chen Y, Song YF. Appl. Catal, 2014; **475**: 140-146.
- 32. Benzekri Z, Aadad HE, Sibous S, Serrar H, Boukhris S. *Heliyon*, 2020; **6:** e05293.
- 33. Hajri FE, Benzekri Z, Sibous S, Ouasri A. *J. Mol. Struct*, 2021; **1230:**129890.
- 34. Benzekri Z, Mejdoubi KE, Boukhris S, Sallek B, Lakhrissi B. *Synth. Commun*, 2016; **46:** 442-451.
- 35. Chehab S, Merroun Y, Ghailane T, Habbadi N. *Mediterr. J. Chem*, 2018; **7:** 56-67.
- 36. Verboekend D, Keller TC, Mitchell S, P'erez R. J. *Adv. Funct. Mater*, 2013; **23:** 1923-1934.
- 37. Silva JFD, Ferracine EDDS, Cardoso D. Microporous and Mesoporous Materials, 2022, 331: 111640.
- 38. Chakraborty S, Paul AR, Majumdar S. Results in Chemistry, 2022; 4:100294.
- 39. Dey SK, Amadeu N, Janiak C. Chem. Commun, 2016; **52**: 7834-7837.
- 40. Karmakar A, Paul A, Mahmudov KT, Guedes da Silva MFC, Pombeiro AJL. New J. Chem, 2016; 40:1535-1546.
- 41. Schneider EM, Zeltner M, Kraenzlin N, Grass RN, Stark WJ. Chem. Commun, 2015; **51:** 10695-10698.
- 42. Basude M, Sunkara P, Puppala V. J. Chem. Pharm. Res, 2013; **5:** 46-50.
- 43. Tamami B, Fadavi A. Catal. Commun, 2005; **6:** 747-75
- 44. Mallouk S, Bougrin K, Laghzizil A, Benhida R. *Molecules*, 2010; **15:** 813-823.
- 45. Zhang Y, Xia C. Appl. Catal. A: Gen, 2009; **366:** 141-147.

- 46. Panja SK, Dwivedi N, Saha S. *RSC Adv*, 2015; **5**: 65526-65531.
- 47. Reddy BM, Patil MK, Rao KN, Reddy GK. J. Mol. Catal. A. Chem, 2006; 258: 302-307.
- 48. Muhammad MT, Khan KM, Taha M, Khan T, et al. *Lett. Org. Chem*, 2016; **13:** 231-235.
- **49.** Rahmati A, Vakili K, Histidine L, Arginine L. *Amino Acids*, 2010; **39:** 911-916.
- 50. Zhu R, Shen J, Wei Y, Zhang F. New J. Chem, 2011; **35:**1861-1866.
- 51. Isobe K, Hoshi T, Suzuki T, Hagiwara H. *Mol. Divers*, 2005; **9:** 317-320.
- 52. Meng D, Qiao Y, Wang X, Wen W Zhao S. *RSC Adv*, 2018; **8:**30180-30185.
- 53. Hosseini-Sarvari M, Sharghi Etemad S. *Chin. J. Chem*, 2007; **25:** 1563–1567.
- 54. Valiey E and Dekam MG. RSC Adv., 2022; **12:**437-450.
- 55. Chen L, Liu S, Pan H, Song K, et al. *Biomass Conversion and Biorefnery*, 2022.
- 56. F. Hajizadeh, B. Maleki, F. M. Zonoz and Amirhassan A. *Journal of the Iranian Chemical Society*, 2021; **18:** 793-804.
- 57. Reddy TI, Varma RS. Tetrahedron Lett, 1997; 38: 1721.
- 58. Wang S, Ren ZJ, Cao WG, Tong W. Synth Commun, 2001; **31:** 673.
- 59. Gawande MB, Jayaram RV. *Catal. Commun.* 2006; **7:** 931.
- 60. Saravanamurugan S, Palanichamy M, Hartmann Murugesan V. *Appl. Catal. A Gen*, 2006; **298:**8.
- 61. Dong F, Li YQ, Dai RF. Chin. Chem. Lett. 2007; 18:266.
- 62. Heravi MM, Bakhtiari K, Taheri S, Oskooie HA. *Chin. Chem. Soc*, 2007; **54:** 1557.
- 63. Kumbhare RM, Sridhar M, Catal. Commun, 2008; 9: 403.
- 64. Pullabhotla VR, Rahman A, Jonnalagadda SB. *Catal. Commun*, 2009; **10:**365.
- 65. Postole G, Chowdhury B, Karmakar B, Pinki K. *J. Catal*, 2010; **269:**110.
- 66. Zhang Y, Dai T, Zhang F, Zhang J, Chu G, Quan C, Chin J. *Catal*, 2016; **37:** 2106.
- 67. Resende Filho JBM, Pires GP, et al. *Catal. Lett*, 2017; **147:**167.
- 68. Miao Z, Yang F, Luan Y, Shu X, Ramella D, Solid J. *State Chem*, 2017; **256:** 27.