Biological Diversity of Thiophene: A Review
Ankita Chaudhary*, K.K. Jha, Sachin Kumar
College of Pharmacy, Teerthankar Mahaveer University, Delhi Road, Moradabad (UP), India
*Corresponding author: Ankitachaudhary27@yahoo.co.in

ABSTRACT
Thiophene has been established as the potential entity in the largely growing chemical world of heterocyclic compounds possessing promising pharmacological characteristics. A series of thiophene compounds can be synthesized through various synthetic routes, with diverse pharmacological activities. In future the moiety & its derivatives draw a special attention of medicinal chemists to produce various scaffolds with potent biological activities & also as a lead pharmacophore of any compounds & for clinical investigations. This review provides various synthetic strategies of thiophene analogues.

Keywords: Thiophene, Isatin(1H-indole-2,3-Dione), Gewald reaction, Volhard-Erdmann cyclization, azuleno[1,2-c] thiophene.

1. INTRODUCTION

Thiophene, containing a sulfur atom at 1 position, positions 2 and 5 are equivalent in the parent ring, as are the 3 and 4 positions. It is a heterocyclic, aromatic compound with formula C₄H₄S, chemical name is thiacyclopentadiene. Thiophene is taken from the Greek word theion means sulfur and phaino means shining. Consisting of a flat five membered ring, it is aromatic as indicated by its extensive substitution reactions.

At room temperature, thiophene is a toxic, flammable and aromatic colourless liquid with a mildly pleasant odor reminiscent of benzene [12]. The molecular mass of thiophene is 84.14 g/mol, density is 1.051 g/ml and Melting Point is -38 °C. It is insoluble in water but soluble in most organic solvents including alcohol and ether. The "electron pairs" on sulfur are significantly delocalized in the π electron system [13], due to this it behaves extremely reactive benzene derivative. Like benzene, thiophene forms an azeotrope [14] with ethanol. The similarity between the physicochemical properties of benzene and thiophene is striking. For example, the boiling point of benzene is 81.1°C and the one of thiophene is 84.4°C (at 760mm Hg) and therefore, thiophene and benzene are a well known example of bioisosterism [15]. It can be easily sulfonated, nitrated, halogenated, acylated. It cannot be alkylated & oxidized [16].

Thiophenes are important heterocyclic compounds, are widely used as building blocks in many agrochemicals [17]. Thiophene possesses antimicrobial [18], analgesic and anti-inflammatory [19], antihypertensive [20], diabetes mellitus [21], Gonadotropin Releasing Hormone antagonist [22], cholesterol inhibition activity [23], antiallergic [24], antitumor [25] activities.

A brief account is given below:

2. ANTIMICROBIAL ACTIVITY

Antimicrobial drugs are effective in the treatment of infection because of their selective toxicity; that is, they have the ability to injure or kill an invading microorganism without harming the host [26]. It is evident from literature that thiophene derivatives are known to be associated with broad
spectrum of biological activity like antibacterial, antifungal. Benzo thiieno[3,2-e]triazolo, theo-pyrimidines, s-triazine incorporated thiophene derivatives thiadiazine analogues, imidazolines and thiourea derivatives possess antimicrobial agent and it act against variety of gram-positive and gram-negative bacteria, some fungi and viruses.

3. PHOSPHODIESTERASE TYPE IV INHIBITORS (PDE4)

In the past years, attention has been primarily focused on cyclic nucleotide phosphodiesterase IV (PDE4) as a suitable target for anti-inflammatory therapy in respiratory diseases. The mixed anti-inflammatory and bronchodilatory profile of PDE4 inhibitors could allow the discovery of new agents, steroid-sparing compounds with utility in diseases associated with chronic airway inflammation, particularly in the management of asthma and COPD [37].

PDE4 isoenzymes (PDE4A-D) are encoded by 4 genes and more than 20 splice variants providing the basis for the continued interest in developing selective PDE4 inhibitors for a number of inflammatory diseases. At the present time there are seven known PDE isoenzyme families (PDE1-7) [38]. Aminothiophenes, isoquinoline analogues of thiophene are reported as PDE-4 agents.

4. CYTOTOXICITY

Cancer is a disease characterized by uncontrolled multiplication and spread of abnormal forms of the body’s own cells [41]. From literature survey it is well known that thiophene heterocyclic exhibit manifold importance in the field of medicinal chemistry as a potent chemotherapeutic agent. Analogues of Triazolo[4,3-a]pyrimidin-6-sulfonamide with an incorporated thiazolidinone moiety, Thiено[2,3-d]pyrimidine derivatives, 2,4-Diamino thiено[2,3-d]pyrimidines, imidazo [4′,5′:4,5]thieno[3,2-d]pyrimidine analogues possess cytotoxicity activity.

5. CNS DEPRESSANT ACTIVITY

Depression is defined as disorders of mood rather than disturbances of thought or cognition [41]. Some of thiophene derivatives show CNS depressant activity. Substitutedthieno[2,3-d]pyrimidine analogues, piperazinyl, benzodiazepine analogues of thiophene and thiophene fused quinazolines shows antipsychotic, neuroleptic & anticonvulsant activity.

6. ANALGESIC AND ANTI-INFLAMMATORY

Inflammation is a normal, protective response to tissue injury caused by physical trauma, noxious chemicals, or microbial agents [26]. It inhibits Prostaglandin synthesis at the site of injury [51]. Analgesic drug is used to control the pain. Prostaglandin E2 (PGE2) is thought to sensitize nerve ending to the action of bradykinin, histamine and other chemical mediators released locally by the inflammation process [26]. Thiено[2,3-d]pyrimidin- 4(3H)-ones, thiophene based thiazine, benzo-thiophene derivatives possess analgesic and anti-inflammatory activity. The anti-inflammatory activity was studied by Carrageenan induced paw oedema method and anaglesic activity studied by tail flick and hot plate method.

7. MISCELLANEOUS ACTIVITY

Thiophenes and their derivatives show many activities which are discussed above, some more activities are mentioned in table.

8. CONCLUSION

The informational data, available in literature so far, rendered thiophene, a significantly important class of heterocycle and their applications are challenging in chemotherapy of various infections etc. A survey of thiophene revealed the moiety have attracted a great deal of interest of medicinal chemist and biochemist and rendered as a lead molecule for designing potential bioactive agents. Also, its derivatives are reported including broad-spectrum pharmacological activities.

This review accompanying supplementary information & its references would extend great deal of help to researchers in determining the best and most productive, economical, suggestive and clinically important compounds of thiophene. Further we can conclude that many other derivatives of thiophene can be synthesized which will be expected to show potent pharmacological activities.

9. ACKNOWLEDGEMENT

The authors are thankful to librarians of various Institutes & libraries NISCAIR New Delhi and to the Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad for providing literature survey facility to carry out the project work.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Scientist Name</th>
<th>Synthesized compound</th>
<th>Structure</th>
<th>Biological Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kavitha P.N. et al. [27]</td>
<td>3- (substituted) amino-2-mercapto-5,6,7, 8-tetrahydro benzo (b)thieno [2,3-d] pyrimidin-4(3H)-one analogues.</td>
<td></td>
<td>Antimicrobial activity, against B. subtilis, K. pneumonia and A. niger, compared with standard drugs Ampicillin and Miconazole.</td>
</tr>
<tr>
<td>5.</td>
<td>Shiradkar M. et al. [31]</td>
<td>N-[3-(substituted)-7H-[1,2,4] triazolo [3,4-b] [1,3,4] thiadiazine / thiadiazol-4,5,6,7-tetrahydrobenzo[b] thiophene.</td>
<td></td>
<td>Good Antimicrobial activity against E. coli, S. aureus, A. niger, compared with standard drugs Gentamycin and Nystatin.</td>
</tr>
</tbody>
</table>

Continued…..
| 8. | S. Shetty Nitin kumar et al. [34] | (Substituted) 8,9,10,11-tetra hydro[1]benzo thieno[3,2-e] [1,2,4]triazolo [1,5-c]pyrimidine -8-one analogues. | Good Antibacterial activity against *B. subtilis* comparable to the standard drug Ampicilin. |
| 11. | Taltavull Joan et al. [39] | (Substituted)1,2, 3,4-tetrahydro pyrimido thieno[2,3-c] iso quinoline-8-amino (2-morpholin-4-yl ethyl) analogues. | Phosphodiesterase IV inhibitors (PDE4), a target for the treatment of asthma and chronic obstructive pulmonary disease (COPD). |

Continued.....
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Compound Description</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Deng Yijun et al. [45]</td>
<td>2-amino-4-oxo- 6 - (substituted) thieno[2,3-d] pyrimidines with bridge length (from 2 to 8 carbon atoms)</td>
<td>Antitumor activity.</td>
</tr>
<tr>
<td>17.</td>
<td>Roso-wsky Andre et al. [46]</td>
<td>2,4-Diamino-5-[(substituted) methyl]-6-bromo thieno[2,3-d] pyrimidine analogues.</td>
<td>Antifolates, as Inhibitors of Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase.</td>
</tr>
</tbody>
</table>

Continued.....
20. Press Jeffery B. et al. [49] (Substituted)9-(4-Methyl-1-piperazinyl)-4H-thieno[3,4-b][1,4] benzodiazepines.

<table>
<thead>
<tr>
<th>R</th>
<th>Y</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>CH₃</td>
<td>7-Cl</td>
<td>H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H</td>
<td>7-F</td>
<td>H</td>
<td>7-F</td>
</tr>
</tbody>
</table>

Potential CNS Agents as neuroleptic, antidepressant agents.

Potential anticonvulsant agents.

22. Alagarsamy V. et al. (2007) 2-Methylthio-3- (substituted)-5,6- dimethylthieno [2,3-d] pyrimidin-4(3H)-ones.

Analgesic agent, compared with standard drug diclofenac.

Anti-inflammatory and analgesic activity, showed good result as compare to standard drug Acetylsalicylic acid.

24. Wardakhan W. W. et al. [54] 3-(substituted) -2-(N-ethoxy carbonyl thioaryl) 4,5,6,7-tetrahydro benzob[1]thiophens.

Antidepressant and Analgesic activity, comparable to reference drug Indomethacin.

Anti-inflammatory and analgesic activity, compare to reference drugs Prednisolone and Veldecoxib.

Continued.....
<table>
<thead>
<tr>
<th>No.</th>
<th>Authors</th>
<th>Compound Description</th>
<th>Molecular Structure</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.</td>
<td>Molvi Khurshid I. et al. [57]</td>
<td>2-(substituted)-5-(4-methoxy benzoyl)-4-methylthiophene-3-carboxylic acid derivatives.</td>
<td></td>
<td>Anti-inflammatory and analgesic activity, compare with standard drug Ibuprofen.</td>
</tr>
<tr>
<td>28.</td>
<td>Aurelio Luigi et al. [58]</td>
<td>3-and 6-(Substituted) 2-amino-4,5,6,7-tetrahydrothieno [2,3-c]pyridine derivatives.</td>
<td></td>
<td>Adenosine receptor allosteric modulators and antagonists.</td>
</tr>
<tr>
<td>29.</td>
<td>Shireesha B. et al. [59]</td>
<td>2-N,N (disubstituted) aminoethoxy methylthiophen [2,3-d]-pyrimidin-4(3H) one derivatives.</td>
<td></td>
<td>Antihistaminic and anticholinergic activity, compare with standard drug Chlorpheniramine maleate.</td>
</tr>
<tr>
<td>30.</td>
<td>Tavares Francis X. et al. [60]</td>
<td>(substituted) Methyl-3-(dimethylamino)methylidene amino-5-phenyl -2-thiophene carboxylate analogues.</td>
<td></td>
<td>Antagonists of Melanin-Concentrating Hormone (MCH) receptor 1.</td>
</tr>
</tbody>
</table>
10. REFERENCES

37. Lipworth BJ. Phosphodiesterase-4 inhibitors for asthma and chronic obstructive pulmonary disease, 2005; 365:167-175.